PolymathPlus Report
📊   Multiple linear regression 2022-04-01 12:48 

# Example 31(a) - Multi-Linear Regression
# Heat of Hardening
# Verified Solution: a0=60.8989, a1=1.56273, a2=0.526503, a3=0.112545 , a4=-0.126618
# Ref: Comput Appl Eng Educ 17: 285, 1998

[
Wpc1 Wpc2 Wpc3 Wpc4 HardHeat
7 26 6 60 78.7
1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
3 71 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1
21 47 4 26 115.9
1 40 23 34 83.8
11 66 9 12 113.3
10 68 8 12 109.4
]

# mlinfit <x1> <x2> <x3> [...] <y> [origin]
mlinfit Wpc1 Wpc2 Wpc3 Wpc4 HardHeat


HardHeat = a0 + a1Wpc1 + a2Wpc2 + a3Wpc3 + a4Wpc4

Variable Value 95% confidence
a0 60.898935 161.61721
a1 1.5627294 1.7177962
a2 0.5265028 1.6694019
a3 0.11254519 1.7407207
a4 -0.12661813 1.6354138

R^2   R^2adj   Rmsd   Variance  
0.9823245    0.9734867    0.5322918    5.985442   

Regression Plot

 70 80 90 100 110 120 70 80 90 100 110 120 HardHeat y=x Line HardHeat Calc



Residuals Plot

 -4 -2 0 2 4 6 70 80 90 100 110 120 HardHeat Zero Line HardHeat - HardHeatCalc



Source data points and calculated data points

  Wpc1 Wpc2 Wpc3 Wpc4 HardHeat HardHeat calc Delta HardHeat
1 7 26 6 60 78.7 78.605297 0.09470346
2 1 29 15 52 74.3 72.83428 1.4657198
3 11 56 8 20 104.3 105.94111 -1.641114
4 11 31 8 47 87.6 89.359854 -1.7598543
5 7 52 6 33 95.9 95.713059 0.186941
6 11 55 9 22 109.2 105.27392 3.9260799
7 3 71 17 6 102.7 104.12238 -1.4223813
8 1 31 22 44 72.5 75.688047 -3.1880472
9 2 54 18 22 93.1 91.695759 1.4042407
10 21 47 4 26 115.9 115.61999 0.28000661
11 1 40 23 34 83.8 81.805299 1.994701
12 11 66 9 12 113.3 112.33163 0.96836772
13 10 68 8 12 109.4 111.70936 -2.3093633

General

Number of independent variables = 4
Regression including a free parameter
Number of observations = 13