PolymathPlus Report
📊   Multiple linear regression 2022-04-01 12:48 

# Example 31(b) - Multi-Linear Regression via origin
# Heat of Hardening
# Verified Solution: a1=2.18918, a2=1.15414, a3=0.753295 , a4=0.488545
# Ref: Comput Appl Eng Educ 17: 285, 1998

[
Wpc1 Wpc2 Wpc3 Wpc4 HardHeat
7 26 6 60 78.7
1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
3 71 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1
21 47 4 26 115.9
1 40 23 34 83.8
11 66 9 12 113.3
10 68 8 12 109.4
]

mlinfit Wpc1 Wpc2 Wpc3 Wpc4 HardHeat origin


HardHeat = a1Wpc1 + a2Wpc2 + a3Wpc3 + a4Wpc4

Variable Value 95% confidence
a1 2.1891766 0.41826867
a2 1.1541357 0.10823254
a3 0.75329494 0.36011122
a4 0.48854515 0.09348302

R^2   R^2adj   Rmsd   Variance  
0.9806563    0.9742084    0.5568439    5.822523   

Multiple Linear Regression via Origin Plot

 70 80 90 100 110 120 70 80 90 100 110 120 HardHeat y=x Line HardHeat Calc



Residuals Plot

 -4 -2 0 2 4 6 70 80 90 100 110 120 HardHeat Zero Line HardHeat - HardHeatCalc



Source data points and calculated data points

  Wpc1 Wpc2 Wpc3 Wpc4 HardHeat HardHeat calc Delta HardHeat
1 7 26 6 60 78.7 79.164242 -0.46424225
2 1 29 15 52 74.3 72.362883 1.9371171
3 11 56 8 20 104.3 104.5098 -0.20980244
4 11 31 8 47 87.6 88.84713 -1.2471299
5 7 52 6 33 95.9 95.98105 -0.0810505
6 11 55 9 22 109.2 105.08605 4.113948
7 3 71 17 6 102.7 104.24845 -1.548447
8 1 31 22 44 72.5 76.035858 -3.5358576
9 2 54 18 22 93.1 91.008981 2.0910185
10 21 47 4 26 115.9 115.93244 -0.03243851
11 1 40 23 34 83.8 82.290922 1.5090779
12 11 66 9 12 113.3 112.89609 0.40390716
13 10 68 8 12 109.4 112.26189 -2.8618926

General

Number of independent variables = 4
Regression not including a free parameter
Number of observations = 13