PolymathPlus Report
📊   Nonlinear Regression (L-M) 2022-04-01 12:49 

# Example: Nonlinear Regression
[
x y
0.5 1.255
0.387 1.25
0.24 1.189
0.136 1.124
0.04 0.783
0.011 0.402
]

# Nonlinear regression model
nlinfit y = a * x / (b + x)

# Initial guess of the
# regression model variables
m(a)= 2
m(b)= 1


y = a*x/(b+x)

Variable Initial guess Value 95% confidence
a 2 1.3275313 0.02699022
b 1 0.02646154 0.00285336

R^2   R^2adj   Rmsd   Variance  
0.9988019    0.9985024    0.004406    0.0001747   

Nonlinear Regression Plot

 0.5 1 0.4 0.6 0.8 1 1.2 1.4 y y=x Line y Calc




Nonlinear Regression Residuals Plot

 -0.02 -0.01 0 0.01 0.02 0.03 0.4 0.6 0.8 1 1.2 y Zero Line y - yCalc




Source data points and calculated data points

  x y y calc Delta y
1 0.5 1.255 1.2608056 -0.00580558
2 0.387 1.25 1.2425693 0.00743072
3 0.24 1.189 1.1956979 -0.00669793
4 0.136 1.124 1.1113046 0.0126954
5 0.04 0.783 0.79897717 -0.01597717
6 0.011 0.402 0.38980899 0.01219101

General

Algorithm LM
Sample size 6
Model vars 2
Indep vars 1
Iterations 9
Max iterations 64